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1. Introduction

In this note we outline an elementary approach to the problem of the
general stochastic. epidemic model. Our method makes it possible to calculate
as many moments as may be required of the stochastic variables involved. It
takes into account finite population size, N , and indeed the moments are

: ; g 1
obtained as expansions in powers of N -

The corresponding problem even for the simple stochastic epidemic model
is non-trivial since the standard exact solution does not lend itself to
effective calculation unless N 1is very small. Some authors [(1), (2), (3)]
have instead developed asymptotic expansions for the distribution in
descending powers of N , the simplest method being that of Weiss (3).
Although the functions obtained are rather complicated and only of limited
direct use, they do make it possible to derive the first few terms of the
asymptotic expansions of as many moments as we may reasonably be interested

in.

It does not seem possible, however, to extend any of these methods to
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the general epidemic model. We therefore propose a very simple new approach
which by-passes the distribution functions and calculates the moments as
power series in %—, directly from the basic recurrence relations. To make
our method clear we shall first demonstrate its application to the simple

epidemic.

It will be noted that the expansions obtained for both models can be
useful only so long as the expected number of infected individuals is much
smaller than the total population. In fact the same Timitation holds also

for the results of the previous authors we have quoted.



2. The Simple Epidemic

Assume a population of N+1 individuals of whom, initially, one is
infected and the remainder susceptible. At any subsequent time, t , the
numbers of infected and susceptible individuals are denoted by x(t) , y(t)
respectively. It is assumed that infected cases remain so indefinitely, and
that none are isolated or otherwise removed from the population. The
probability of an additional infection occurring in the time interval

(t,t+st) 1is assumed to be Bx(t)y(t)st+o(St) where B is a constant. If

pn(t) = Prix{(t)=nl , (1)

then we define the generating function

Following a standard method [cf(4), p. 73] and remembering that

y=N+l-x , we see that G(A,t) satisfies the equation

3G _ ) 3 A 3G A 9%G
We set T = Nt and obtain
oG _ A e
S ik A(A‘l){ax 5 N-axz (4)

Consider the factorial moments of x(t) . For this purpose we define



X(x=1)(x=2)see(x-r+1)

(x),. = (r=1,24004) (5)
(3= (6)
and
| e R (7)
If we write Gr=§£§ , then
oA
Mr(T) = Gr(l’T) : (8)
Now differentiate (4) r times, using Leibniz' theorem, and set A=1 .

This yields

er

dt

with

and substitute in (9). Then

+ 2r(r—1)Mr + r(r-l)(r-Z)Mr_l} ; (9)
= (rs2) (10)
B
Bl 2 (11)
N2
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Comparing 1ike powers of %—, we get
dur
T it r(r-l)ur_l

dA

B T rh s rlel) A s g 2r(r=-Duy. + rr-1)(r-2)u,_

dB
Vit
rrE T rBr + r(r-l)Br_1 - {\"AY‘+1 + 2r(r—1)Ar + r(r-l)(r—Z)Ar }

=1

with initial conditions

g 0 (rs2)
Ar(O) = Br(O) = eee = () (r=0,1,2,---)

+ eeo}

(12)

Equations (13) with initial conditions (16) can be solved directly and lead to



u.(t) = ref(e®-1)"" (rs1) . (17)
Substituting in (14) for r=1,2 we get

dA

Loy 18 T_

riren A1 - 2e (e -1) (18)

dA

o= A +2A - 4ef(e"-1)(3e"-1) (19)

il 2 1

with A1(0)=A2(0)=0 , and hence

Peltlie aket b 28 (141)

(20)

4e(1+1) + 4e”T(31+2) - 12°T .

I=

—
-

~
i

The procedure can clearly be continued to higher values of r and the

coefficients Br(r) can also be calculated.

If mr(r) denotes the expectation of [x(t)1" , then

m(t) =M (1) = e’ + %’[ZET(1+T)-262T] + O(l—) (21)
1 1 N2

m(t) =M (1) + M (1) = 227 - &7 + & [6eT(t+1)+6e2T(21+1)+12e°T1 + o(L) .
2 ) 1 N N2

(22)
We see, as mentioned above, that these expansions are useful only so long

as eT<<N "



3. The General Epidemic Model

In this model it is assumed that an infected individual, when diagnosed,
is isolated from the population and subsequently, whether following recovery,
death or for any other reason, is immune to the infection. Again start with a
population of N+1 individuals of whom one is infected and N are
susceptible. We shall later deal with the case where the initial number of

infected individuals is different from 1 . At any time t , let

x(t) = number of susceptible individuals;
y(t) = number of infected individuals;
z(t) = number of those who have been isolated following infection.

It is assumed that, in the interval (t,t+St) there is probability
BxySt+o(st) of a new infection (i.e. that the set x,y,z changes to
x-1,y+1,z) and yySt+o(St) that an infected individual is diagnosed and
isolated (i.e., that x,y,z changes to x,y-1,z+1) . The probability of
other types of change, e.g., multiple infections, is assumed to be g(eE)

Clearly

X+y+z=N+1 (t=0) (23)

while x(0)=N , y(0)=1 , z(0)=0 .

We take y , z as our stochastic variables, and define



PY‘,S(t)

PliyCe)=r o Z(t)=s

and

gt o e Ll S

Since the possible transitions in the time-interval (t,t+St) are:

(ysz) = (y+1,z) with probability By(N+l-y-z)&t + o(St)

and

(y,z) » (y-1,z+1) with probability vyyst + o(st)

it follows that [cf (4), p. 73]

e T S T R
ot (n=-1)8n an (N+1-n N ¢ BC)G i (n 1)eyn 5
_ 36 326G 326G 3G
= Bn(n-1)(N ool ;{ - m) + y(z-n) I
Now let
h+k
o G
Gy iz t) =
h,k BnhBCk

and

(25)

(26)



M el el el b o (27)

el iy el

Clearly Mh k(t) is the joint factional moment of order h,k , i.e.

E[(y)h(z)k] i

If t=pNt , p=y/B then (25) becomes

s el 8 5 n*(n-1)6, | + nz(n-1)6, , + p(n-2)G, |, (28)
and hence, differentiating and setting n=¢z=1 ,
hok = L+ n(hom LM, kM, + hE2(h-1)Hkep N
oT h,k ket gk = h+1 ,k h,k+1 h,k
# (DM ey = PRy g+ hCh-1) (k2 ) (29)
We now write
Mh,k(T) = hk + Aa K h L4 - (30)

N2

If we substitute this in (29), and compare 1ike powers of %—, we get, after

a little manipulation,

dup,
g & Rl g £ BURDINS, o (31)
dA
K = hAy  + h(h-DA o o by - hE2(he )k
= BCh=1)0y ) ker * PRy ey 7 hOh=10(k-20u, (2]
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Egg¢£—= hBh,k + h(h'l)Bh-1,k - hAh+1,k - hAh,k+1 - h[2(h-1)+k+p]Ah’k
- h(h_l)Ah-l,k+l + pkAh+1,k-z - h(h-l)(h+k+2)Ah_1’k : (33)
The initial conditions are
Hy o(0) = 1, ,(0) = 1
“h,k(o) = 0 (a1l other values of h,k) (34)
Ank(0) =B, (0) =0 (h,k=0,1,2,°+)

The system (31) with initial conditions can be solved as before and leads to

(zh= &  hieTe®-1)! (35)

Yh,k k,

showing incidentally that the first moment of z(t) is O(%) 5

Now consider some cases of (32).

dA
(i) LN ol A PR S R [ (36)
with A1 (0)=0 ,
yielding A 0(T) = [(2-p)T+2]e" - 2¢*" . (37)
dA

(i1) h=0 , k>0 | K=ok = ks, €] (38)



with Ao,k(0)=0

from which, by (35),
Ko adals pkék’l(er-l)‘

(ii1) h=2 ./ k=0 ' A similar elementary argument leads to

A (1) = -2[(2-p)T+2+ple" + 2[2(3-p)1+8+ple2® - 1237 .

(iv) h=k=1 . In this case we get
Ao lr)i=2peiTiss2pliritlet

18

The system (33) can be treated similarly and we get

p(1-1)(4-p)e" - &®T + 5p - p2

o

—~
—

~—
1]

= 2p2e®T - 4p27e" - 2p?

oW

i—.
=

-
1

11

(41)



4, Results

<y?>

Combining the results obtained as above we finally obtain

=0

<y> =M iy %‘{292T+[(Q-Z)T-2]8T} % 0(1—0

0 N2
Mz,o i M1,o
it
9ot L L -ﬁ- {[(2-p)T+2(p+1)1-2e"[2(3-p)T-p-71+12e2T} + 0(12—)
N
Spzs = M, = 208 (T rie1ht oLy
Y 1041 N N2
<z> =M =8 (eT-1) + & {(1-1)(4-p)e -e2T5-0} + o(L)
0,41 N N2 E
MO,I 4 Mo,z

(€%-1) + B~ {[(r-1)(4-p)-4prIe™+(20-1)e* "45-3p} + 0(134 ]
N N

Various other statistics, including correlation coefficients can all be

deduced from these.

12
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5. More General Initial Conditions

If we assume as initial conditions

x(0) = N
y(0) = a
z(0) =0

where a is any natural number then the differential equations are unchanged

but the initial conditions become
(Y‘:l,z,o .c)
A (0) =10 (r,s=0,1,0+¢) .

Since no new principle is involved we shall merely quote here one typical

result, viz.

M, (1) = <y> = ae’ - 3 ([(p-2)t-(a+1)I+(a+1)e"} + 0(1;0 )
N



6. Some Numerical Results

We see from (17) that in the absence of any procedure for removing
infected individuals and on-the assumption of an infinitely large population,
the expected number of infected individuals is e' . To illustrate the effect

of removals and of finite N we write

and Tist some values below.

0 A
0 18.9
N = 1000 1 19.4
e’ = 100 10 23.5
50 41.9
0 A (e'=500) A (e'=1000)
0 49.3 198
N = 10,000 10 52.4 205

100 80.3 267
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